jueves, 26 de noviembre de 2009

Prepa 3 Justo Sierra azi o maz chida!!!!

Weno pz zobra dezir k ztamoz mien orgullozoz de zer UNAM haha zii la maz vergaz haha xD
pero pz en zpezial amo mi prepa numa azi aii un wen de chavoz mien tzzz!! (babazz)
ii numa eventoz mien genialez haha ziii numa inchez cuboz io kero entrar ztan poka madre
Laz clazez ztan rifadaz i el gym zta vergaz
El jardin ez la mejor part ez un lugar tan genial k numa comez doermez i ztudiaz mien riko ahi!!

I pz me la pazo mien chido ahi con me gran amiwa Nuria hahha numa noeztraz mamadaz
Con Jorge ii Miguel Miza i Eduardo
haha numa ezoz tipoz zon la onda!!!
Jorge papucho!!! hahah azi le dizen laz chavaz hahha
zk numa la neta zi zta mien weno
Miguel ez un morbozo d lo peor pero ez la pura buena onda
Miza haha numa el como me dezezpera pero iwal ez chido!!!
Eduardo haaa el ez un patan aunk pz zi ez chido

Amm weno i k dezir d Chule y Ramzez
haha aunk zoe maz invizible para Chule k para Ramzez haha

Aww i el tipo d morado numa como me wuzta haha zta mien lindo!!!
ziizii numa azi con unaz ganaz d hablarle

Weno ezo ez todo i pz
avizarlez d el proximo evento
k ze ievara acabo el 27 de Noviembre de 7:00 a 22:00
dirigido x el cubo D
Concurzoz tokin i maz
haha vaiia ztara chido!!!



lunes, 19 de octubre de 2009

Modelo atomico de Thomson (video ingles)




Bravo Hernandez Yaozihuatl

Modelo atomico de Bohr (video Ingles)




Bravo Hernandez Yaozihuatl

Modelo de Rutherford (video ingles)




Bravo Hernandez Yaozihuatl

Modelo de Rutherford (video ingles)

Modelo atomico de Bohr

El modelo atómico de Bohr o de Bohr-Rutherford es un modelo cuantizado del átomo que Bohr propuso en 1913 para explicar cómo los electrones pueden tener órbitas estables alrededor del núcleo. Este modelo planetario es un modelo funcional que no representa el átomo (objeto físico) en sí sino que explica su funcionamiento por medio de ecuaciones.

Niels Bohr se basó en el átomo de hidrógeno para realizar el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón. El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia.

En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo. Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número "n" recibe el nombre de Número Cuántico Principal.

Bohr supuso además que el momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.

Estos niveles en un principio estaban clasificados por letras que empezaban en la "K" y terminaban en la "Q". Posteriormente los niveles electrónicos se ordenaron por números. Cada órbita tiene electrones con distintos niveles de energía obtenida que después se tiene que liberar y por esa razón el electrón va saltando de una órbita a otra hasta llegar a una que tenga el espacio y nivel adecuado, dependiendo de la energía que posea, para liberarse sin problema y de nuevo volver a su órbita de origen.

Sin embargo no explicaba el espectro de estructura fina que podría ser explicado algunos años más tarde gracias al modelo atómico de Sommerfeld. Históricamente el desarrollo del modelo atómico de Bohr junto con la dualidad onda-corpúsculo permitiría a Erwin Schrödinger descubrir la ecuación fundamental de la mecánica cuántica.

POSTULADOS DE BOHR
En 1913, Niels Bohr desarrolló su célebre modelo atómico de acuerdo a cuatro postulados fundamentales:

1. Los electrones orbitan el átomo en niveles discretos y cuantizados de energía, es decir, no todas las órbitas están permitidas, tan sólo un número finito de éstas.
2. Los electrones pueden saltar de un nivel electrónico a otro sin pasar por estados intermedios.
3. El salto de un electrón de un nivel cuántico a otro implica la emisión o absorción de un único cuanto de luz (fotón) cuya energía corresponde a la diferencia de energía entre ambas órbitas.
4. Las órbitas permitidas tienen valores discretos o cuantizados del momento angular orbital L de acuerdo con la siguiente ecuación:

L = n \cdot \hbar = n \cdot {h \over 2\pi}
Donde n = 1,2,3,… es el número cuántico angular o número cuántico principal.

La cuarta hipótesis asume que el valor mínimo de n es 1. Este valor corresponde a un mínimo radio de la órbita del electrón de 0.0529 nm. A esta distancia se le denomina radio de Bohr. Un electrón en este nivel fundamental no puede descender a niveles inferiores emitiendo energía.

Se puede demostrar que este conjunto de hipótesis corresponde a la hipótesis de que los electrones estables orbitando un átomo están descritos por funciones de onda estacionarias. Un modelo atómico es una representación que describe las partes que tiene un átomo y como están dispuestas para formar un todo.

Basándose en la constante de Planck E \ = \ h \ \nu consiguió cuantizar las órbitas observando las líneas del espectro.

Bravo Hernandez Yaozihuatl

Modelo atomico de Rutherford

El modelo atómico de Rutherford es un modelo atómico o teoría sobre la estructura interna del átomo propuesto por el químico y físico británico Ernest Rutherford para explicar los resultados de su "experimento de la lámina de oro", realizado en 1911.
Previamente a la propuesta de Rutherford, los físicos pequeños aceptaban que las cargas eléctricas en un átomo tenían una distribución más o menos uniforme. Rutherford trató de ver como era la dispersión de partículas alfa por parte de los átomos de una lámina de oro muy delgada. Los ángulos deflactados por las partículas supuestamente aportarían información sobre como era la distrubución de carga en los átomos. En concreto, era de esperar que si las cargas estaban distribuidas acordemente al modelo de Thomson la mayoría de las partículas atravesarían la delgada lámina sufriendo sólo ligerísimas deflacciones en su trayectoria aproximadamente recta. Aunque esto era cierto para la mayoría de partículas alfa, un número importante de estas sufrían deflexiones de cerca de 180º, es decir, prácticamente salían rebotadas en dirección opuesta a la incidente.

Rutherford apreció que esta fracción de partículas rebotadas en dirección opuesta podía ser explicada si se asumía que existían fuertes concentraciónes de cargas positivas en el átomo. La mecánica newtoniana en conjunción con la ley de Coulomb predice que el ángulo de deflexión de una partícula alfa relativamente ligera, por parte de un átomo de oro más pesado depende del parámetro de impacto o distancia a la que la partícula alfa pasaba del núcleo:[1]

(1) \chi = 2\pi - 2\cos^{-1} \left( \frac{2K/(E_0b)}{\sqrt{1+2K/(E_0b)^2}} \right)

Donde:

K = (q_N/4\pi\varepsilon_0)\,, siendo \varepsilon_0 la constante dieléctrica del vacío y q_N\,, es la carga eléctrica del centro dispersor.
E_0\,, es la energía cinética inicial de la partícula alfa indicdente.
b\, es el parámetro de impacto.

Dado que Rutherford observó una fracción apreciable de partículas "rebotadas" para las cuales el ángulo de deflexión es cercano a χ ≈ π, de la relación inversa a (1) que es:

(2) b = \frac{2K}{E_0}\cot \frac{\chi}{2}

Se deduce que el parámetro de impacto debe ser bastante menor que el radio atómico. De hecho el parámetro de impacto necesario para obtener una fracción apreciable de partículas "rebotadas" sirvió para hacer una estimación del tamaño del núcleo atómico, que resulta ser unas cien mil veces más pequeño que el diámetro atómico.

IMPORTANCIA DEL MODELO
La importancia del modelo de Rutherford residió en proponer la existencia de un núcleo en el átomo. Término que, paradójicamente, no aparece en sus escritos. Lo que Rutherford consideró esencial, para explicar los resultados experimentales, fue "una concentración de carga" en el centro del átomo, ya que si no, no podía explicarse que algunas partículas fueran rebotadas en dirección casi opuesta a la incidente. Este fue un paso crucial en la comprensión de la materia, ya implicaba la existencia de un núcleo atómico donde se concentraba toda la carga positiva y más del 99,9% de la masa. Las estimaciones del núcleo revelaban que el átomo en su mayor parte estaba vacío.

Rutherford propuso que los electrones orbitarían en ese espacio vacío alrededor de un minúsculo núcleo atómico, situado en el centro del átomo. Además se abría varios problemas nuevos que llevarían al descubrimiento de nuevos hechos y teorías al tratar de explicarlo:

* Por un lado se planteó el problema de como un conjunto de cargas positivas podían mantenerse unidas en un volumen tan pequeño, hecho que llevó posteriormente a la postulación y descubrimiento de la fuerza nuclear fuerte, que es una de las cuatro interacciones fundamentales.
* Por otro lado existía otra dificultad proveniente de la electrodinámica clásica que predice que una partícula cargada y acelerada, como sería necesario para mantenerse en órbita, radiaría radiación electromagnética, perdiendo energía. Las leyes de Newton, junto con las ecuaciones de Maxwell del electromagnetismo aplicadas al átomo de Rutherford llevan a que en un tiempo del orden de 10 − 10s, toda la energía del átomo se habría radiado, con la consiguiente caida de los electrones sobre el núcleo.[2] Se trata, por tanto de un modelo físicamente inestable, desde el punto de vista de la física clásica.

Aunque según Rutherford, las órbitas de los electrones no están muy bien definidas y forman una estructura compleja alrededor del núcleo, dándole un tamaño y forma algo indefinidas. No obstante, los resultados de su experimento, permitieron calcular que el radio del átomo era diez mil veces mayor que el núcleo mismo, lo que hace que haya un gran espacio vacío en el interior de los átomos.

Bravo Hernandez Yaozihuatl